Spatial Pattern Analysis using Closest Events (SPACE)-A Nearest Neighbor Point Pattern Analysis Framework for Assessing Spatial Relationships from Digital Images.
Andrew M SoltiszPeter F CraigmileRengasayee VeeraraghavanPublished in: Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada (2024)
The quantitative description of biological structures is a valuable yet difficult task in the life sciences. This is commonly accomplished by imaging samples using fluorescence microscopy and analyzing resulting images using Pearson's correlation or Manders' co-occurrence intensity-based colocalization paradigms. Though conceptually and computationally simple, these approaches are critically flawed due to their reliance on signal overlap, sensitivity to cursory signal qualities, and inability to differentiate true and incidental colocalization. Point pattern analysis provides a framework for quantitative characterization of spatial relationships between spatial patterns using the distances between observations rather than their overlap, thus overcoming these issues. Here we introduce an image analysis tool called Spatial Pattern Analysis using Closest Events (SPACE) that leverages nearest neighbor-based point pattern analysis to characterize the spatial relationship of fluorescence microscopy signals from image data. The utility of SPACE is demonstrated by assessing the spatial association between mRNA and cell nuclei from confocal images of cardiac myocytes. Additionally, we use synthetic and empirical images to characterize the sensitivity of SPACE to image segmentation parameters and cursory image qualities such as signal abundance and image resolution. Ultimately, SPACE delivers performance superior to traditional colocalization methods and offers a valuable addition to the microscopist's toolbox.
Keyphrases