Login / Signup

Kill-Resist-Renew Trinity: Hyperbranched Polymer with Self-Regenerating Attack and Defense for Antifouling Coatings.

Guoxiong DaiXiaoqing AiLiqin MeiChunfeng MaGuangzhao Zhang
Published in: ACS applied materials & interfaces (2021)
Traditional antifouling coatings are generally based on a single antifouling mechanism, which can hardly meet the needs of different occasions. Here, a single "kill-resist-renew trinity" polymeric coating integrating fouling killing, resistance, and releasing functions is reported. To achieve the design, a novel monomer-tertiary carboxybetaine ester acrylate with the antifouling group N-(2,4,6-trichlorophenyl)maleimide (TCB-TCPM) is synthesized and copolymerized with methacrylic anhydride via reversible addition-fragmentation chain transfer polymerization yielding a degradable hyperbranched polymer. Such a polymer at the surface/seawater is able to hydrolyze and degrade to short segments forming a dynamic surface (releasing). The hydrolysis of TCB-TCPM generates the antifouling groups TCPM (killing) and zwitterionic groups (resistance). Such a polymeric coating exhibits a controllable degradation rate, which increases with the degrees of branching. The antibacterial assay demonstrates that the antifouling ability arise from the synergistic effect of "attacking" and "defending". This study provides a new strategy to solve the challenging problem of marine biofouling.
Keyphrases
  • drug delivery
  • cancer therapy
  • high resolution
  • simultaneous determination
  • tandem mass spectrometry