Impact of SARS-CoV-2 Variants on the Analytical Sensitivity of rRT-PCR Assays.
Yuqing ChenYanxi HanJing YangYu MaJinming LiYuqing ChenPublished in: Journal of clinical microbiology (2022)
Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with enhanced transmissibility, pathogenicity, and immune escape ability have ravaged many countries and regions, which has brought substantial challenges to pandemic prevention and control. Real-time reverse transcriptase PCR (rRT-PCR) is widely used for SARS-CoV-2 detection but may be limited by the continuous evolution of the virus. However, the sensitivity of Chinese commercial rRT-PCR kits to critical SARS-CoV-2 variants remains unknown. In this study, contrived MS2 virus-like particles were used as reference materials to evaluate the analytical sensitivity of Daan, BioGerm, EasyDiagnosis, Liferiver, and Sansure kits when detecting six important variants (Alpha, Beta, Gamma, Delta, Omicron, and Fin-796H). The Beta and Delta variants adversely affected the analytical sensitivity of the BioGerm ORF1ab gene assay (9.52% versus 42.96%, P = 0.014, and 14.29% versus 42.96%, P = 0.040, respectively), whereas the N gene assay completely failed in terms of the Fin-796H variant. The Gamma and Fin-796H variants impeded the PCR amplification efficiency for the Sansure ORF1ab gene assay (33.33% versus 66.67%, P = 0.031, and 66.67% versus 95.24%, P = 0.040, respectively), and the Delta variant compromised the E gene assay (52.38% versus 85.71%, P = 0.019). The Alpha and Omicron variants had no significant effect on the kits. This study highlights the necessity of identifying the potential effect of viral mutations on the efficacy and sensitivity of clinical detection assays. It can also provide helpful insights regarding the development and optimization of diagnostic assays and aid the strategic management of the ongoing pandemic.