Login / Signup

Intra- and interobserver assessments of intestinal wall thickness and segmentations from transverse sections of feline abdominal ultrasound images.

Jasmine ChangIan R PorterMarnin A FormanNatalya ShcherbanParminder S Basran
Published in: Veterinary radiology & ultrasound : the official journal of the American College of Veterinary Radiology and the International Veterinary Radiology Association (2022)
Measurements of intestinal wall thicknesses from ultrasound imaging (US) are routinely used to support diagnoses of intestinal disorders in cats, however published studies describing observer agreement are currently lacking. The aim of this retrospective, observer agreement study was to quantify inter- and intraobserver repeatability and agreement in the measurement of intestinal wall layer thicknesses and the segmentation of transverse sections of small intestines in US images of 20 cats. Intestinal wall layer thickness measurements of the mucosa, submucosa, muscularis, serosa layer, and total thickness of these layers were performed on five cats with small cell epitheliotropic lymphoma, five with inflammatory bowel disease, and 10 with other conditions. Thickness measurements and the segmentation encompassing the serosa layer were obtained from five observers four times non-sequentially. The average standard deviation in thickness measurements (95% confidence interval) in the mucosa, submucosa, muscularis, serosa, and total thickness were 0.35 (0.07-0.95), 0.24 (0.07-0.52), 0.22 (0.06-0.49), 0.20 (0.05-0.49), and 0.57 (0.11-1.60) mm, respectively. The average intraclass correlation coefficients, which estimates the degree of consistency in thickness measurements and segmentation areas for each observer, ranged from 0.355 to 0.870 and 0.850 to 0.993, respectively. The interclass correlation coefficient, which estimates the degree of consistency when measuring a thickness or segmentation area over all observers ranged from 0.115 to 0.753, and 0.811 to 0.902, respectively. The overall average Dice Coefficient, which estimates the extent of overlap of the segmentations for all observers was 0.957 (0.933 to 0.972). Our results suggest segmentations of small intestines have a higher interobserver agreement than measurements of intestinal wall thicknesses.
Keyphrases