Self-Assembly with 2,6-Bis(1-(pyridin-4-ylmethyl)-1H-1,2,3-triazol-4-yl)pyridine: Silver(I) and Iron(II) Complexes.
Daniel A W RossDan PrestonJames D CrowleyPublished in: Molecules (Basel, Switzerland) (2017)
A new "click" ligand, 2,6-bis(1-(pyridin-4-ylmethyl)-1H-1,2,3-triazol-4-yl)pyridine (L) featuring a tridentate 2,6-bis(1,2,3-triazol-4-yl)pyridine (tripy) pocket and two pyridyl (py) units was synthesized in modest yield (42%) using the copper(I) catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The coordination chemistry of the ligand with silver(I) and iron(II) ions was examined using a battery of solution (¹H and DOSY (diffusion ordered spectroscopy) nuclear magnetic resonance (NMR), infrared and absorption spectroscopies, high-resolution electrospray ionization mass spectrometry (HR-ESI-MS)), and solid state (X-ray crystallography, elemental analysis) techniques. When treated with silver(I) ions, the ligand forms discrete [Ag(L)]⁺ (X-, where X- = BF₄-, NO₃- or SbF₆-) complexes in dimethyl sulfoxide (DMSO) solution but these complexes crystallize as coordination polymers. The addition of [Fe(H₂O)₆](BF₄)₂ to an acetonitrile solution of the ligand forms the expected monomeric octahedral [Fe(L)₂]2+ complex and treatment of the iron(II) complex with AgBF₄ generates a heterometallic linear coordination polymer.
Keyphrases
- solid state
- high resolution
- mass spectrometry
- magnetic resonance
- gold nanoparticles
- quantum dots
- ionic liquid
- ms ms
- silver nanoparticles
- aqueous solution
- iron deficiency
- liquid chromatography
- magnetic resonance imaging
- room temperature
- high performance liquid chromatography
- visible light
- metal organic framework
- newly diagnosed
- drug discovery
- tandem mass spectrometry
- smoking cessation