Login / Signup

Drivers of the dive response in trained harbour porpoises (Phocoena phocoena).

Siri L ElmegaardBirgitte I McDonaldPeter Teglberg Madsen
Published in: The Journal of experimental biology (2019)
Pronounced dive responses through peripheral vasoconstriction and bradycardia enable prolonged apnoea in marine mammals. For most vertebrates, the dive response is initiated upon face immersion, but little is known about the physical drivers of diving and surfacing heart rate in cetaceans whose faces are always mostly submerged. Using two trained harbour porpoises instrumented with an ECG-measuring sound-and-movement tag (DTAG-3), we investigated the initiation and progression of bradycardia and tachycardia during apnoea and eupnoea for varying levels of immersion. We show that paranasal wetting drives bradycardia initiation and progression, whereas apnoea leads to dive-level bradycardia eventually, but not instantly. At the end of dives, heart rate accelerates independently of lung expansion, perhaps in anticipation of surfacing; however, full tachycardia is only engaged upon inhalation. We conclude that breathing drives surface tachycardia, whereas blowhole wetting is an important driver of bradycardia; however, anticipatory/volitional modulation can overrule such responses to sensory inputs.
Keyphrases
  • heart rate
  • heart rate variability
  • blood pressure
  • positive airway pressure
  • catheter ablation
  • obstructive sleep apnea
  • mental health
  • mass spectrometry