Login / Signup

Mitigating exhalation puffs during oxygen therapy for respiratory disease.

Arshad KudrolliBrian ChangJade ConsalviAnton DetiChristopher FrechetteHelen ScovilleGeoffrey R SheinfeldWilliam T McGee
Published in: Physics of fluids (Woodbury, N.Y. : 1994) (2021)
We investigate the dispersal of exhalations corresponding to a patient experiencing shortness of breath while being treated for a respiratory disease with oxygen therapy. Respiration through a nasal cannula and a simple O2 mask is studied using a supine manikin equipped with a controllable mechanical lung by measuring aerosol density and flow with direct imaging. Exhalation puffs are observed to travel 0.35 ± 0.02 m upward while wearing a nasal cannula, and 0.29 ± 0.02 m laterally through a simple O2 mask, posing a higher direct exposure risk to caregivers. The aerosol-laden air flows were found to concentrate in narrow conical regions through both devices at several times their concentration level compared with a uniform spreading at the same distance. We test a mitigation strategy by placing a surgical mask loosely over the tested devices. The mask is demonstrated to alleviate exposure by deflecting the exhalations from being launched directly above a supine patient. The surgical mask is found to essentially eliminate the concentrated aerosol regions above the patient over the entire oxygenation rates used in treatment in both devices.
Keyphrases