Soil Enzyme Activity Behavior after Urea Nitrogen Application.
Benjamin DaviesJeffrey A CoulterPaulo Humberto PagliariPublished in: Plants (Basel, Switzerland) (2022)
Understanding how fertilizer application (particularly N, the most used chemical fertilizer worldwide) interacts with soil microbes is important for the development of best management practices that target improved microbial activity to enhance sustainable food production. This study was conducted to determine whether urea N rate and time of application to maize ( Zea mays ) influenced soil enzyme activity. Enzyme activity was determined by monitoring fluorescein diacetate (FDA) hydrolysis, ß-glucosidase, acid-phosphomonoesterase, and arylsulfatase activities. Experiments were conducted from 2014 through 2016 to compare single (fall or spring applications) and split applications of N at varying N rates under irrigation (Becker) and rainfed conditions (Lamberton and Waseca) in MN, USA. Nitrogen rates varied by location and were based on University of Minnesota guidelines. Soil samples were collected seven times each season. Nitrogen application split into two applications increased FDA activity by 10% compared with fall and spring applied N at Waseca. Fall or spring N application decreased arylsulfatase activity by 19% at Becker and by between 13% and 16% at Lamberton. ß-Glucosidase and acid-phosphomonoesterase activities were unaffected by N application. Sampling time and year had the greatest impact on enzyme activity, but the results varied by location. A negative linear relationship occurred between FDA and ß-glucosidase activity at all three sites. In summary, urea N application had small effects on enzyme activity at the sites studied, suggesting that some form of organic N could be more important than the ammonium provided by urea.