Login / Signup

Tuning Fe-Se Tetrahedral Frameworks by a Combination of [Fe(en)3]2+ Cations and Cl- Anions.

Eranga H GamageJoshua T GreenfieldColin UngerSaeed KamaliJudith K ClarkColin P HarmerLiang LuoJigang WangMichael ShatrukKirill Kovnir
Published in: Inorganic chemistry (2020)
A one-dimensional (1D) chain compound [Fe(en)3]3(FeSe2)4Cl2 (en = ethylenediamine), featuring tetrahedral FeSe2 chains separated by [Fe(en)3]2+ cations and Cl- anions, has been synthesized by a low temperature solvothermal method using simple starting materials. The degree of distortion in the Fe-Se backbone is similar to previously reported compounds with isolated 1D FeSe2 chains. 57Fe Mössbauer spectroscopy reveals the mixed-valent nature of [Fe(en)3]3(FeSe2)4Cl2 with Fe3+ centers in the [FeSe2]- chains and Fe2+ centers in the [Fe(en)3]2+ complexes. SQUID magnetometry indicates that [Fe(en)3]3(FeSe2)4Cl2 is paramagnetic with a reduced average effective magnetic moment, μeff = 9.51 μB per formula unit, and a negative Weiss constant, θ = -10.9(4) K, indicating antiferromagnetic (AFM) nearest neighbor interactions within the [FeSe2]- chains. Weak antiferromagnetic coupling between chains, combined with rather strong intrachain AFM coupling, leads to spin-glass behavior at low temperatures, as indicated by a frequency shift of the peak observed at 3 K in AC magnetic measurements. A combination of [Fe(en)3]2+ and Cl- ions is also capable of stabilizing mixed-valent 2D Fe-Se puckered layers in the crystal structure of [Fe(en)3]4(Fe14Se21)Cl2, where Fe14Se21 layers have a unique topology with large open pores. Property measurements of [Fe(en)3]4(Fe14Se21)Cl2 could not be performed due to the inability to either grow large crystals or synthesize this material in single-phase form.
Keyphrases
  • metal organic framework
  • aqueous solution
  • ionic liquid
  • preterm infants
  • room temperature
  • minimally invasive
  • high speed
  • tandem mass spectrometry