Login / Signup

Reverse Microemulsion Synthesis of Sulfur/Graphene Composite for Lithium/Sulfur Batteries.

Mohammad Rejaul KaiserZhaohui MaXiwen WangFudong HanTao GaoXiulin FanJia-Zhao WangHua Kun LiuShixue DouChunsheng Wang
Published in: ACS nano (2017)
Due to its high theoretical capacity, high energy density, and easy availability, the lithium-sulfur (Li-S) system is considered to be the most promising candidate for electric and hybrid electric vehicle applications. Sulfur/carbon cathode in Li-S batteries still suffers, however, from low Coulombic efficiency and poor cycle life when sulfur loading and the ratio of sulfur to carbon are high. Here, we address these challenges by fabricating a sulfur/carboxylated-graphene composite using a reverse (water-in-oil) microemulsion technique. The fabricated sulfur-graphene composite cathode, which contains only 6 wt % graphene, can dramatically improve the cycling stability as well as provide high capacity. The electrochemical performance of the sulfur-graphene composite is further enhanced after loading into a three-dimensional heteroatom-doped (boron and nitrogen) carbon-cloth current collector. Even at high sulfur loading (∼8 mg/cm2) on carbon cloth, this composite showed 1256 mAh/g discharge capacity with more than 99% capacity retention after 200 cycles.
Keyphrases
  • room temperature
  • solid state
  • ion batteries
  • high resolution
  • ionic liquid
  • reduced graphene oxide