Novel Positively Charged Metal-Coordinated Nanofiltration Membrane for Lithium Recovery.
Li WangDanyal RehmanPeng-Fei SunAkshay DeshmukhLiyuan ZhangQi HanZhe YangZhongying WangHee-Deung ParkJohn H Lienhard VChuyang Y TangPublished in: ACS applied materials & interfaces (2021)
Nanofiltration (NF) with high water flux and precise separation performance with high Li+/Mg2+ selectivity is ideal for lithium brine recovery. However, conventional polyamide-based commercial NF membranes are ineffective in lithium recovery processes due to their undesired Li+/Mg2+ selectivity. In addition, they are constrained by the water permeance selectivity trade-off, which means that a highly permeable membrane often has lower selectivity. In this study, we developed a novel nonpolyamide NF membrane based on metal-coordinated structure, which exhibits simultaneously improved water permeance and Li+/Mg2+ selectivity. Specifically, the optimized Cu-m-phenylenediamine (MPD) membrane demonstrated a high water permeance of 16.2 ± 2.7 LMH/bar and a high Li+/Mg2+ selectivity of 8.0 ± 1.0, which surpassed the trade-off of permeance selectivity. Meanwhile, the existence of copper in the Cu-MPD membrane further enhanced anti-biofouling property and the metal-coordinated nanofiltration membrane possesses a pH-responsive property. Finally, a transport model based on the Nernst-Planck equations has been developed to fit the water flux and rejection of uncharged solutes to the experiments conducted. The model had a deviation below 2% for all experiments performed and suggested an average pore radius of 1.25 nm with a porosity of 21% for the Cu-MPD membrane. Overall, our study provides an exciting approach for fabricating a nonpolyamide high-performance nanofiltration membrane in the context of lithium recovery.