Cooperative Single-Atom Active Centers for Attenuating the Linear Scaling Effect in the Nitrogen Reduction Reaction.
Ke YeMin HuQin-Kun LiYi LuoJun JiangGuo-Zhen ZhangPublished in: The journal of physical chemistry letters (2021)
Cooperative effects of adjacent active centers are critical for single-atom catalysts (SACs) as active site density matters. Yet, how it affects scaling relationships in many important reactions such as the nitrogen reduction reaction (NRR) is underexplored. Herein we elucidate how the cooperation of two active centers can attenuate the linear scaling effect in the NRR through a first-principle study on 39 SACs comprised of two adjacent (∼4 Å apart) four N-coordinated metal centers (MN4 duo) embedded in graphene. Bridge-on adsorption of dinitrogen-containing species appreciably tilts the balance of adsorption of N2H and NH2 toward N2H and thus substantially loosens the restraint of scaling relationships in the NRR, achieving low onset potential (V) and direct N≡N cleavage (Mo, Re) at room temperature, respectively. The potential of the MN4 duo in the NRR provides new insight into circumventing the limitations of scaling relationships in heterogeneous catalysis.