Consequences of changing planned foot placement on balance control and forward progress.
Nicholas KreterPeter C FinoPublished in: Journal of the Royal Society, Interface (2024)
While walking humans generally plan foot placement two steps in advance. However, it is often necessary to rapidly alter foot placement position just before stepping due to the appearance of a new obstacle. While humans are quite capable of rapidly altering foot placement position, such changes can have major effects on centre of mass dynamics. We investigated how rapid changes to planned foot placement impact centre of mass dynamics, and how such changes influence the control of balance and forward progress, during both straight- and turning-gait. Thirteen young adults walked along a virtually projected walkway with precision footholds oriented either in a straight line or with a single 60°, 90° or 120° turn. On a subset of trials, participants were required to rapidly avoid stepping on select footholds. We found that if the centre of mass was disrupted such that it interfered with task success (i.e. staying upright and continuing along the planned path), walkers were more likely to sacrifice forward progress than the upright stability. Further, walkers appear to control centre of mass dynamics differently following inhibited steps during step turns than during spin turns, which may reflect a larger threat to task success when spin turns are interrupted.