Classical and Nonclassical Nucleation Mechanisms of Insulin Crystals.
Joana FerreiraVicente Dominguez-ArcaJoão CarneiroGerardo PrietoPablo TaboadaJoão Moreira de CamposPublished in: ACS omega (2024)
Although the Classical Nucleation Theory (CNT) is the most consensual theory to explain protein nucleation mechanisms, experimental observations during the shear-induced assays suggest that the CNT does not always describe the insulin nucleation process. This is the case at intermediate precipitant (ZnCl 2 ) solution concentrations (2.3 mM) and high-temperature values (20 and 40 °C) as well as at low precipitant solution concentrations (1.6 mM) and low-temperature values (5 °C). In this work, crystallization events following the CNT registered at high precipitant solution concentrations (3.1 and 4.7 mM) are typically described by a Newtonian response. On the other hand, crystallization events following a nonclassical nucleation pathway seem to involve the formation of a metastable intermediate state before crystal formation and are described by a transition from Newtonian to shear-thinning responses. A dominant shear-thinning behavior (shear viscosity values ranging more than 6 orders of magnitude) is found during aggregation/agglomeration events. The rheological analysis is complemented with different characterization techniques (Dynamic Light Scattering, Energy-Dispersive Spectroscopy, Circular Dichroism, and Differential Scanning Calorimetry) to understand the insulin behavior in solution, especially during the occurrence of aggregation/agglomeration events. To the best of our knowledge, the current work is the first study describing nonclassical nucleation mechanisms during shear-induced crystallization experiments, which reveals the potential of the interdisciplinary approach herein described and opens a window for a clear understanding of protein nucleation mechanisms.