A Multi-Center Study of CT-Based Neck Nodal Radiomics for Predicting an Adaptive Radiotherapy Trigger of Ill-Fitted Thermoplastic Masks in Patients with Nasopharyngeal Carcinoma.
Sai-Kit LamJiang ZhangYuan-Peng ZhangBing LiRui-Yan NiTa ZhouTao PengAndy Lai-Yin CheungTin-Ching ChauFrancis Kar-Ho LeeCelia Wai-Yi YipKwok-Hung AuVictor Ho Fun LeeAmy Tien-Yee ChangLawrence Wing-Chi ChanJing CaiPublished in: Life (Basel, Switzerland) (2022)
Significant lymph node shrinkage is common in patients with nasopharyngeal carcinoma (NPC) throughout radiotherapy (RT) treatment, causing ill-fitted thermoplastic masks (IfTMs). To deal with this, an ad hoc adaptive radiotherapy (ART) may be required to ensure accurate and safe radiation delivery and to maintain treatment efficacy. Presently, the entire procedure for evaluating an eligible ART candidate is time-consuming, resource-demanding, and highly inefficient. In the artificial intelligence paradigm, the pre-treatment identification of NPC patients at risk for IfTMs has become greatly demanding for achieving efficient ART eligibility screening, while no relevant studies have been reported. Hence, we aimed to investigate the capability of computed tomography (CT)-based neck nodal radiomics for predicting IfTM-triggered ART events in NPC patients via a multi-center setting. Contrast-enhanced CT and the clinical data of 124 and 58 NPC patients from Queen Elizabeth Hospital (QEH) and Queen Mary Hospital (QMH), respectively, were retrospectively analyzed. Radiomic (R), clinical (C), and combined (RC) models were developed using the ridge algorithm in the QEH cohort and evaluated in the QMH cohort using the median area under the receiver operating characteristics curve (AUC). Delong's test was employed for model comparison. Model performance was further assessed on 1000 replicates in both cohorts separately via bootstrapping. The R model yielded the highest "corrected" AUC of 0.784 (BCa 95%CI: 0.673-0.859) and 0.723 (BCa 95%CI: 0.534-0.859) in the QEH and QMH cohort following bootstrapping, respectively. Delong's test indicated that the R model performed significantly better than the C model in the QMH cohort ( p < 0.0001), while demonstrating no significant difference compared to the RC model ( p = 0.5773). To conclude, CT-based neck nodal radiomics was capable of predicting IfTM-triggered ART events in NPC patients in this multi-center study, outperforming the traditional clinical model. The findings of this study provide valuable insights for future study into developing an effective screening strategy for ART eligibility in NPC patients in the long run, ultimately alleviating the workload of clinical practitioners, streamlining ART procedural efficiency in clinics, and achieving personalized RT for NPC patients in the future.
Keyphrases
- computed tomography
- contrast enhanced
- end stage renal disease
- lymph node
- newly diagnosed
- ejection fraction
- magnetic resonance imaging
- healthcare
- prognostic factors
- artificial intelligence
- emergency department
- peritoneal dialysis
- radiation therapy
- squamous cell carcinoma
- lymph node metastasis
- diffusion weighted
- big data
- radiation induced