Ultrauniform, strong, and ductile 3D-printed titanium alloy through bifunctional alloy design.
Jingqi ZhangMichael J BerminghamJoseph A OtteYingang LiuZiyong HouNan YangYu YinMohamad BayatWeikang LinXiaoxu HuangDavid H StJohnMatthew Simon DarguschPublished in: Science (New York, N.Y.) (2024)
Coarse columnar grains and heterogeneously distributed phases commonly form in metallic alloys produced by three-dimensional (3D) printing and are often considered undesirable because they can impart nonuniform and inferior mechanical properties. We demonstrate a design strategy to unlock consistent and enhanced properties directly from 3D printing. Using Ti-5Al-5Mo-5V-3Cr as a model alloy, we show that adding molybdenum (Mo) nanoparticles promotes grain refinement during solidification and suppresses the formation of phase heterogeneities during solid-state thermal cycling. The microstructural change because of the bifunctional additive results in uniform mechanical properties and simultaneous enhancement of both strength and ductility. We demonstrate how this alloy can be modified by a single component to address unfavorable microstructures, providing a pathway to achieve desirable mechanical characteristics directly from 3D printing.