All-Inorganic CsPbX3 Perovskite Solar Cells: Progress and Prospects.
Jingru ZhangGary HodesZhiwen JinShengzhong Frank LiuPublished in: Angewandte Chemie (International ed. in English) (2019)
Recently, lead halide-based perovskites have become one of the hottest topics in photovoltaic research because of their excellent optoelectronic properties. Among them, organic-inorganic hybrid perovskite solar cells (PSCs) have made very rapid progress with their power conversion efficiency (PCE) now at 23.7 %. However, the intrinsically unstable nature of these materials, particularly to moisture and heat, may be a problem for their long-term stability. Replacing the fragile organic group with more robust inorganic Cs+ cations forms the cesium lead halide system (CsPbX3 , X is halide) as all-inorganic perovskites which are much more thermally stable and often more stable to other factors. From the first report in 2015 to now, the PCE of CsPbX3 -based PSCs has abruptly increased from 2.9 % to 17.1 % with much enhanced stability. In this Review, we summarize the field up to now, propose solutions in terms of development bottlenecks, and attempt to boost further research in CsPbX3 PSCs.