Fabrication of Poly(ethylene terephthalate) Fiber@Microporous Organic Polymer with Amino Groups@Cu Films for Flexible and Metal-Economical Electromagnetic Interference Shielding Materials.
Seong In ParkChang Wan KangSe Youn ChoSang Moon LeeHae Jin KimYoon-Joo KoJaewon ChoiSeung Uk SonPublished in: Langmuir : the ACS journal of surfaces and colloids (2020)
Flexible and metal-economical electromagnetic interference (EMI) shielding films were fabricated based on microporous organic polymer (MOP) chemistry. MOP with amino groups (MOP-A) could be introduced to the surface of poly(ethylene terephthalate) (PET) fibers. Due to the microporosity and amino groups of MOP-A, Ag+ could be easily incorporated into PET@MOP-A. Through Ag-catalyzed electroless Cu deposition, PET@MOP-A@Cu films were fabricated. The morphological and chemical structures of the PET@MOP-A@Cu were characterized by scanning electron microscopy, X-ray diffraction studies, and X-ray photoelectron spectroscopy. Among the films, the PET@MOP-A@Cu-40 with 41 wt % Cu (a thickness of 0.64 μm) showed excellent EMI shielding performance with 64.3-73.8 dB against an EM of 8-12 GHz. Moreover, it showed retention of the original EMI shielding performance against 1000 bending (R = 5 mm) tests.