Login / Signup

Broad-spectrum antiviral agents: secreted phospholipase A2 targets viral envelope lipid bilayers derived from the endoplasmic reticulum membrane.

Ming ChenChie Aoki-UtsuboMasanori KameokaLin DengYutaka TeradaWataru KamitaniKei SatoYoshio KoyanagiMakoto HijikataKeiko ShindoTakeshi NodaMichinori KoharaHak Hotta
Published in: Scientific reports (2017)
Hepatitis C virus (HCV), dengue virus (DENV) and Japanese encephalitis virus (JEV) belong to the family Flaviviridae. Their viral particles have the envelope composed of viral proteins and a lipid bilayer acquired from budding through the endoplasmic reticulum (ER). The phospholipid content of the ER membrane differs from that of the plasma membrane (PM). The phospholipase A2 (PLA2) superfamily consists of a large number of members that specifically catalyse the hydrolysis of phospholipids at a particular position. Here we show that the CM-II isoform of secreted PLA2 obtained from Naja mossambica mossambica snake venom (CM-II-sPLA2) possesses potent virucidal (neutralising) activity against HCV, DENV and JEV, with 50% inhibitory concentrations (IC50) of 0.036, 0.31 and 1.34 ng/ml, respectively. In contrast, the IC50 values of CM-II-sPLA2 against viruses that bud through the PM (Sindbis virus, influenza virus and Sendai virus) or trans-Golgi network (TGN) (herpes simplex virus) were >10,000 ng/ml. Moreover, the 50% cytotoxic (CC50) and haemolytic (HC50) concentrations of CM-II-sPLA2 were >10,000 ng/ml, implying that CM-II-sPLA2 did not significantly damage the PM. These results suggest that CM-II-sPLA2 and its derivatives are good candidates for the development of broad-spectrum antiviral drugs that target viral envelope lipid bilayers derived from the ER membrane.
Keyphrases