Login / Signup

Satellite-based habitat monitoring reveals long-term dynamics of deer habitat in response to forest disturbances.

Julian OeserMarco HeurichCornelius SenfDirk PflugmacherTobias Kuemmerle
Published in: Ecological applications : a publication of the Ecological Society of America (2021)
Disturbances play a key role in driving forest ecosystem dynamics, but how disturbances shape wildlife habitat across space and time often remains unclear. A major reason for this is a lack of information about changes in habitat suitability across large areas and longer time periods. Here, we use a novel approach based on Landsat satellite image time series to map seasonal habitat suitability annually from 1986 to 2017. Our approach involves characterizing forest disturbance dynamics using Landsat-based metrics, harmonizing these metrics through a temporal segmentation algorithm, and then using them together with GPS telemetry data in habitat models. We apply this framework to assess how natural forest disturbances and post-disturbance salvage logging affect habitat suitability for two ungulates, roe deer (Capreolus capreolus) and red deer (Cervus elaphus), over 32 yr in a Central European forest landscape. We found that red and roe deer differed in their response to forest disturbances. Habitat suitability for red deer consistently improved after disturbances, whereas the suitability of disturbed sites was more variable for roe deer depending on season (lower during winter than summer) and disturbance agent (lower in windthrow vs. bark-beetle-affected stands). Salvage logging altered the suitability of bark beetle-affected stands for deer, having negative effects on red deer and mixed effects on roe deer, but generally did not have clear effects on habitat suitability in windthrows. Our results highlight long-lasting legacy effects of forest disturbances on deer habitat. For example, bark beetle disturbances improved red deer habitat suitability for at least 25 yr. The duration of disturbance impacts generally increased with elevation. Methodologically, our approach proved effective for improving the robustness of habitat reconstructions from Landsat time series: integrating multiyear telemetry data into single, multi-temporal habitat models improved model transferability in time. Likewise, temporally segmenting the Landsat-based metrics increased the temporal consistency of our habitat suitability maps. As the frequency of natural forest disturbances is increasing across the globe, their impacts on wildlife habitat should be considered in wildlife and forest management. Our approach offers a widely applicable method for monitoring habitat suitability changes caused by landscape dynamics such as forest disturbance.
Keyphrases
  • climate change
  • human health
  • machine learning
  • deep learning
  • computed tomography
  • social media
  • electronic health record
  • convolutional neural network
  • contrast enhanced
  • health information