Hydrogen-Bond-Donor-Directed Switching of Enantioselectivity in the Vinylogous Aldol-Cyclization Cascade Reaction of Prostereogenic 3-Alkylidene Oxindoles with Isatins and o -Quinones.
Yun-Jie TsouNadaraj SathishkumarI-Ting ChenTing-An LeeHsin-Tsung ChenJeng-Liang HanPublished in: The Journal of organic chemistry (2022)
In this study, we reported a hydrogen-bond-donor-directed enantiodivergent vinylogous aldol-cyclization cascade reaction of 3-alkylidene oxindoles with isatins and o -quinones. Both enantiomers can be prepared by thiourea or squaramide cinchona alkaloid bifunctional organocatalysts with the same quinine scaffold. Kinetic study data provided the possible reaction mechanism for the vinylogous aldol-cyclization cascade reaction. The DFT calculation data showed the geometry of the generated dienolates from pronucleophiles dominated the observed switch of enantioselectivity.