Local Riluzole Release from a Thermosensitive Hydrogel Rescues Injured Motoneurons through Nerve Root Stumps in a Brachial Plexus Injury Rat Model.
Jintao FangLiang LiHong ZhaiBengang QinDaping QuanEnxian ShiMenghai ZhuJiantao YangXiaolin LiuLiqiang GuPublished in: Neurochemical research (2020)
The C5-C6 nerve roots are usually spared from avulsion after brachial plexus injury (BPI) and can thus be used as donors for nerve repair. A BPI rat model with C5-C6 nerve root stumps has been established in our previous work. The aim of this study was to test whether riluzole loaded into a thermosensitive hydrogel could applied locally in the nerve root stumps of this BPI rat model, thus increasing the reparative effect of the nerve root stumps. Nile red (a hydrophobic dye) was used as a substitute for riluzole since riluzole itself does not emit light. Nile red, loaded into a thermosensitive hydrogel, was added to the nerve root stumps of the BPI rat model. Additionally, eighteen rats, with operation on right brachial plexus, were evenly divided into three groups: control (Con), thermosensitive hydrogel (Gel) and thermosensitive hydrogel loaded with riluzole (Gel + Ri) groups. Direct nerve repair was performed after local riluzole release for two weeks. Functional and electrophysiological evaluations and histological assessments were used to evaluate the reparative effect 8 weeks after nerve repair. Nile red was slowly released from the thermosensitive hydrogel and retrograde transport through the nerve root stumps to the motoneurons, according to immunofluorescence. Discernible functional recovery began earlier in the Gel + Ri group. The compound muscle action potential, ChAT-expressing motoneurons, positivity for neurofilaments and S100, diameter of regenerating axons, myelin sheath thickness and density of myelinated fibers were markedly increased in the Gel + Ri group compared with the Con and Gel groups. Our results indicate that the local administration of riluzole could undergo retrograde transportation through C5-C6 nerve root stumps, thereby promoting neuroprotection and increasing nerve regeneration.