Login / Signup

Absolute Quantification of Nanoparticle Interactions with Individual Human B Cells by Single Cell Mass Spectrometry.

Nathan D DonahueVinit ShethAlex N FrickensteinAlyssa HoldenSandy KanapillyChady StephanStefan Wilhelm
Published in: Nano letters (2022)
We report on the absolute quantification of nanoparticle interactions with individual human B cells using quadrupole-based inductively coupled plasma mass spectrometry (ICP-MS). This method enables the quantification of nanoparticle-cell interactions at single nanoparticle and single cell levels. We demonstrate the efficient and accurate detection of individually suspended B cells and found an ∼100-fold higher association of colloidally stable positively charged nanoparticles with single B cells than neutrally charged nanoparticles. We confirmed that these nanoparticles were internalized by individual B cells and determined that the internalization occurred via energy-dependent pathways consistent with endocytosis. Using dual analyte ICP-MS, we determined that >80% of single B cells were positive for nanoparticles. Our study demonstrates an ICP-MS workflow for the absolute quantification of nanoparticle-cell interactions with single cell and single nanoparticle resolution. This unique workflow could inform the rational design of various nanomaterials for controlling cellular interactions, including immune cell-nanoparticle interactions.
Keyphrases