Federated learning for predicting clinical outcomes in patients with COVID-19.
Ittai DayanHolger R RothAoxiao ZhongAhmed HarouniAmilcare GentiliAnas Z AbidinAndrew LiuAnthony Beardsworth CostaBradford J WoodChien-Sung TsaiChih-Hung WangChun-Nan HsuC K LeePeiying RuanDaguang XuDufan WuEddie HuangFelipe Campos KitamuraGriffin LaceyGustavo César de Antônio CorradiGustavo NinoHao-Hsin ShihHirofumi ObinataHui RenJason C CraneJesse TetreaultJiahui GuanJohn W GarrettJoshua D KaggieJung Gil ParkKeith DreyerKrishna JuluruKristopher KerstenMarcio Aloisio Bezerra Cavalcanti RockenbachMarius George LinguraruMasoom A HaiderMeena AbdelMaseehNicola RiekePablo F DamascenoPedro Mario Cruz E SilvaPochuan WangSheng XuShuichi KawanoSira SriswasdiSoo Young ParkThomas M GristVarun BuchWatsamon JantarabenjakulWeichung WangWon Young TakXiang LiXihong LinYoung Joon KwonAbood QurainiAndrew FengAndrew N PriestIsmail Baris TurkbeyBenjamin Scott GlicksbergBernardo Canedo BizzoByung Seok KimCarlos Tor-DíezChia-Cheng LeeChia-Jung HsuChin LinChiu-Ling LaiChristopher P HessColin CompasDeepeksha BhatiaEric K OermannEvan LeibovitzHisashi SasakiHitoshi MoriIsaac YangJae Ho SohnKrishna Nand Keshava MurthyLi-Chen FuMatheus Ribeiro Furtado de MendonçaMike FralickMin-Kyu KangMohammad AdilNatalie GangaiPeerapon VateekulPierre ElnajjarSarah HickmanSharmila MajumdarShelley L McLeodSheridan ReedStefan GräfStephanie A HarmonTatsuya KodamaThanyawee PuthanakitTony MazzulliVitor Lima de LavorYothin RakvongthaiYu Rim LeeYuhong WenFiona J GilbertMona G FloresQuanzheng LiPublished in: Nature medicine (2021)
Federated learning (FL) is a method used for training artificial intelligence models with data from multiple sources while maintaining data anonymity, thus removing many barriers to data sharing. Here we used data from 20 institutes across the globe to train a FL model, called EXAM (electronic medical record (EMR) chest X-ray AI model), that predicts the future oxygen requirements of symptomatic patients with COVID-19 using inputs of vital signs, laboratory data and chest X-rays. EXAM achieved an average area under the curve (AUC) >0.92 for predicting outcomes at 24 and 72 h from the time of initial presentation to the emergency room, and it provided 16% improvement in average AUC measured across all participating sites and an average increase in generalizability of 38% when compared with models trained at a single site using that site's data. For prediction of mechanical ventilation treatment or death at 24 h at the largest independent test site, EXAM achieved a sensitivity of 0.950 and specificity of 0.882. In this study, FL facilitated rapid data science collaboration without data exchange and generated a model that generalized across heterogeneous, unharmonized datasets for prediction of clinical outcomes in patients with COVID-19, setting the stage for the broader use of FL in healthcare.