Login / Signup

A noncanonical inhibitory circuit dampens behavioral sensitivity to light.

Takuma SonodaJennifer Y LiNikolas W HayesJonathan C ChanYudai OkabeStephane BelinHomaira NawabiTiffany M Schmidt
Published in: Science (New York, N.Y.) (2020)
Retinal ganglion cells (RGCs) drive diverse, light-evoked behaviors that range from conscious visual perception to subconscious, non-image-forming behaviors. It is thought that RGCs primarily drive these functions through the release of the excitatory neurotransmitter glutamate. We identified a subset of melanopsin-expressing intrinsically photosensitive RGCs (ipRGCs) in mice that release the inhibitory neurotransmitter γ-aminobutyric acid (GABA) at non-image-forming brain targets. GABA release from ipRGCs dampened the sensitivity of both the pupillary light reflex and circadian photoentrainment, thereby shifting the dynamic range of these behaviors to higher light levels. Our results identify an inhibitory RGC population in the retina and provide a circuit-level mechanism that contributes to the relative insensitivity of non-image-forming behaviors at low light levels.
Keyphrases
  • deep learning
  • induced apoptosis
  • type diabetes
  • oxidative stress
  • skeletal muscle
  • metabolic syndrome
  • cell death
  • endoplasmic reticulum stress
  • high fat diet induced
  • optic nerve