Login / Signup

Interactions between large-scale and local factors influence seed predation rates and seed loss.

Eduardo Soares CalixtoJohn L MaronPhilip G Hahn
Published in: Ecology and evolution (2023)
Herbivores often have highly variable impacts on plant fecundity. The relative contribution of different environmental factors operating at varying spatial scales in affecting this variability is often unclear. We examined how density-dependent seed predation at local scales and regional differences in primary productivity are associated with variation in the magnitude of pre-dispersal seed predation on Monarda fistulosa (Lamiaceae). Within M. fistulosa populations growing in a low-productivity region (LPR), Montana, USA, and a high-productivity region (HPR), Wisconsin, USA, we quantified the magnitude of pre-dispersal seed predation among individual plants differing in seed head densities. Out of a total of 303 M. fistulosa plants that were surveyed, we found half as many herbivores in seed heads in the LPR ( n  = 133 herbivores) compared to the HPR ( n  = 316). In the LPR, 30% of the seed heads were damaged in plants with low seed head density, while 61% of seed heads were damaged in plants with high seed head density. Seed head damage was consistently high in the HPR (about 49% across the range of seed head density) compared to the LPR (45% across a range of seed head density). However, the proportion of seeds per seed head that were destroyed by herbivores was nearly two times higher (~38% loss) in the LPR compared to HPR (22% loss). Considering the combined effects of probability of damage and seed loss per seed head, the proportion seed loss per plant was consistently higher in the HPR regardless of seed head density. Nevertheless, because of greater seed head production, the total number of viable seeds produced per plant was higher in HPR and high-density plants, despite being exposed to greater herbivore pressure. These findings show how large-scale factors can interact with local-scale factors to influence how strongly herbivores suppress plant fecundity.
Keyphrases
  • optic nerve
  • oxidative stress
  • climate change
  • optical coherence tomography