Login / Signup

Ultrastructural immunolocalization of hyaluronate in regenerating tail of lizards and amphibians supports an immune-suppressive role to favor regeneration.

Lorenzo Alibardi
Published in: Journal of morphology (2017)
Hyaluronate is produced in high amount during the initial stages of regeneration of the tail and limbs of lizards, newts, and frog tadpoles. The fine distribution of hyaluronate in the regenerating tail blastemas has been assessed by ultrastructural immunolocalization of the Hyaluronate Binding Protein (HABP), a protein that indirectly reveals the presence of hyaluronate in tissues. The present electron microscopic study shows that HABP is detected in the cytoplasm but this proteins is mainly localized on the surfaces of cells in the wound epidermis and mesenchymal cells of the blastema. HABP appears, therefore, accumulated along the cell surface, indicating that hyaluronate coats these embryonic-like cells and their antigens. The high level of hyaluronate in the blastema, aside favoring tissue hydration, cell movements, and remodeling for blastema formation and growth, likely elicits a protection from the possible immune-reaction of lymphocytes and macrophages to embryonic-fetal-like antigens present on the surface of blastema and epidermal cells. Their survival, therefore, allows the continuous multiplication of these cells in regions rich in hyaluronate, promoting the regeneration of a new tail or limbs. The study suggests that organ regeneration in vertebrates is only possible in the presence of high hyaluronate content and hydration. These two conditions facilitate cell movement, immune-protection, and activate the Wnt signaling pathway, like during development.
Keyphrases