We report the synthesis and characterization of conjugated, conformationally rigid, and electroactive carbon-based nanotubes that we term tubularenes. These structures are constructed from a resorcin[n b]arene base. Cyclization of the conjugated aromatic nanotube is achieved in one-pot eight-fold C-C bond formation via Suzuki-Miyaura cross-coupling. DFT calculations indicate a buildup of strain energy in excess of 90 kcal mol-1. The resulting architectures contain large internal void spaces >260 Å3, are fluorescent, and able to accept up to 4 electrons. This represents the first scaffolding approach that provides conjugated nanotube architectures.