Meta-learning in active inference.
Olivier PenacchioA ClementePublished in: The Behavioral and brain sciences (2024)
Binz et al. propose meta-learning as a promising avenue for modelling human cognition. They provide an in-depth reflection on the advantages of meta-learning over other computational models of cognition, including a sound discussion on how their proposal can accommodate neuroscientific insights. We argue that active inference presents similar computational advantages while offering greater mechanistic explanatory power and biological plausibility.