Login / Signup

A nanoscale study of the structure and electrical response of Sepia eumelanin.

Dieudonné NiyonkuruAnthony CamusManuel RealiZhaojing GaoDaniel M ShadrackOleg ButyaevMarko SurtchevClara Santato
Published in: Nanoscale advances (2023)
Eumelanin, the brown-black member of the melanin biopigment family, is a prototype material for sustainable (green) organic electronics. Sepia eumelanin (Sepia) is a type of biosourced eumelanin extracted from the ink sac of cuttlefish. Electron microscopy and scanning probe microscopy images of Sepia show distinguishable near spherical granules with diameters of about 150-200 nm. We have recently reported on predominant electronic transport in printed films of Sepia formulated inks including the (insulating) binder Polyvinyl-butyral (PVB). In that work, we proposed that inter-granular percolative transport, observed for micrometric interelectrode distances, is promoted by the confining action of the PVB binder on the Sepia granules. Considering that inter-granular transport implies intra-granular transport, in this work we proceeded to a nanoscale study of Sepia granules by High Resolution Atomic Force Microscopy (HR-AFM) and Conductive-AFM (c-AFM). We have observed protrusions on the surface of the Sepia granules, suggesting sub-granular structures compatible with the hierarchical development of Sepia, as proposed elsewhere. For films of Sepia formulated inks deposited on gold-coated substrates, c-AFM revealed, for the very first time, a nanoscale electrical response. Nanoscale studies provide the key to structure-property relationships in biosourced materials strategic for sustainable organic electronics.
Keyphrases
  • atomic force microscopy
  • high speed
  • high resolution
  • single molecule
  • electron microscopy
  • deep learning
  • living cells
  • machine learning
  • quantum dots
  • carbon nanotubes