Login / Signup

Stability of Octadecyltrimethoxysilane-Based Coatings on Aluminum Alloy Surface.

Alexey Y ZhizhchenkoAnastasiia V ShabalinaAli A AljulaihStanislav O GurbatovAleksandr A KuchmizhakSatoru IwamoriSergei A Kulinich
Published in: Materials (Basel, Switzerland) (2022)
Long-term stability in contact with water of organosilane layers formed by octadecyltrimethoxysilane (ODTMS) on polished aluminum alloy (AA2024) through dip-coating was studied by combining SEM, water contact angle measurements, and X-ray photoelectron spectroscopy. Similar organosilane layers were formed on AA2024 coated with permanganate conversion coating, 1,2-bis(triethoxysilyl)ethane (BTSE) and hydrated SiO x as under-layers, after which their long-term durability was also tested. During immersion in water for about one month, all the samples exhibited a decrease in hydrophobicity, implying the prepared organosilane layer was not stable over time, gradually hydrolyzing and letting water interact with the underlying layer. In parallel, SEM images of one-layer samples taken after immersion showed clear signs of local electrochemical corrosion, while XPS analysis confirmed a loss of silicon from the surface layer. The highest stability over time was demonstrated by a one-layer sample prepared in an ethanol/water bath for 5 min and by a similar ODTMS layer prepared on hydrated MnO x as an under-layer.
Keyphrases
  • high resolution
  • gold nanoparticles
  • magnetic resonance
  • computed tomography
  • deep learning
  • machine learning
  • optical coherence tomography
  • mass spectrometry
  • liquid chromatography