Experimenting with Trinucleotide Repeats: Facts and Technical Issues.
Guy-Franck RichardPublished in: Methods in molecular biology (Clifton, N.J.) (2020)
Trinucleotide repeats are a peculiar class of microsatellites involved in many neurological as well as developmental disorders. Their propensity to generate very large expansions over time is supposedly due to their capacity to form specific secondary structures, such as imperfect hairpins, triple helices, or G-quadruplexes. These unusual structures were proposed to trigger expansions in vivo. Here, I review known technical issues linked to these structures, such as slippage during polymerase chain reaction and aberrant migration of long trinucleotide repeats during agarose gel electrophoresis. Our current understanding of interactions between trinucleotide repeat secondary structures and the mismatch-repair machinery is also quickly reviewed, and critical questions relevant to these interactions are addressed.