MYH3-associated distal arthrogryposis zebrafish model is normalized with para-aminoblebbistatin.
Julia WhittleLilian AntunesMya HarrisZachary UpshawDiane S SepichAaron N JohnsonMayssa MokalledLilianna Solnica-KrezelMatthew B DobbsChristina A GurnettPublished in: EMBO molecular medicine (2020)
Distal arthrogryposis (DA) is group of syndromes characterized by congenital joint contractures. Treatment development is hindered by the lack of vertebrate models. Here, we describe a zebrafish model in which a common MYH3 missense mutation (R672H) was introduced into the orthologous zebrafish gene smyhc1 (slow myosin heavy chain 1) (R673H). We simultaneously created a smyhc1 null allele (smyhc1- ), which allowed us to compare the effects of both mutant alleles on muscle and bone development, and model the closely related disorder, spondylocarpotarsal synostosis syndrome. Heterozygous smyhc1R673H/+ embryos developed notochord kinks that progressed to scoliosis with vertebral fusions; motor deficits accompanied the disorganized and shortened slow-twitch skeletal muscle myofibers. Increased dosage of the mutant allele in both homozygous smyhc1R673H/R673H and transheterozygous smyhc1R673H/- embryos exacerbated the notochord and muscle abnormalities, causing early lethality. Treatment of smyhc1R673H/R673H embryos with the myosin ATPase inhibitor, para-aminoblebbistatin, which decreases actin-myosin affinity, normalized the notochord phenotype. Our zebrafish model of MYH3-associated DA2A provides insight into pathogenic mechanisms and suggests a beneficial therapeutic role for myosin inhibitors in treating disabling contractures.