Login / Signup

Multidimensional Vibrational Coherence Spectroscopy.

Tiago BuckupJérémie Leonard
Published in: Topics in current chemistry (Cham) (2018)
Multidimensional vibrational coherence spectroscopy has been part of laser spectroscopy since the 1990s and its role in several areas of science has continuously been increasing. In this contribution, after introducing the principals of vibrational coherence spectroscopy (VCS), we review the three most widespread experimental methods for multidimensional VCS (multi-VCS), namely femtosecond stimulated Raman spectroscopy, pump-impulsive vibrational spectroscopy, and pump-degenerate four wave-mixing. Focus is given to the generation and typical analysis of the respective signals in the time and spectral domains. Critical aspects of all multidimensional techniques are the challenges in the data interpretation due to the existence of several possible contributions to the observed signals or to optical interferences and how to overcome the corresponding difficulties by exploiting experimental parameters including higher-order nonlinear effects. We overview how multidimensional vibrational coherence spectroscopy can assist a chemist in understanding how molecular structural changes and eventually photochemical reactions take place. In order to illustrate the application of the techniques described in this chapter, two molecular systems are discussed in more detail in regard to the vibrational dynamics in the electronic excited states: (1) carotenoids as a non-reactive system and (2) stilbene derivatives as a reactive system.
Keyphrases