Login / Signup

Soft X-ray nanospectroscopy for quantification of X-ray linear dichroism on powders.

Selwin HageraatsMathieu ThouryStefan StanescuKatrien Keune
Published in: Journal of synchrotron radiation (2021)
X-ray linear dichroism (XLD) is a fundamental property of many ordered materials that can for instance provide information on the origin of magnetic properties and the existence of differently ordered domains. Conventionally, measurements of XLD are performed on single crystals, crystalline thin films, or highly ordered nanostructure arrays. Here, it is demonstrated how quantitative measurements of XLD can be performed on powders, relying on the random orientation of many particles instead of the controlled orientation of a single ordered structure. The technique is based on a scanning X-ray transmission microscope operated in the soft X-ray regime. The use of a Fresnel zone plate allows X-ray absorption features to be probed at ∼40 nm lateral resolution - a scale small enough to probe the individual crystallites in most powders. Quantitative XLD parameters were then retrieved by determining the intensity distributions of certain diagnostic dichroic absorption features, estimating the angle between their transition dipole moments, and fitting the distributions with four-parameter dichroic models. Analysis of several differently produced ZnO powders shows that the experimentally obtained distributions indeed follow the theoretical model for XLD. Making use of Monte Carlo simulations to estimate uncertainties in the calculated dichroic model parameters, it was established that longer X-ray exposure times lead to a decrease in the amplitude of the XLD effect of ZnO.
Keyphrases
  • high resolution
  • dual energy
  • monte carlo
  • electron microscopy
  • room temperature
  • computed tomography
  • healthcare
  • photodynamic therapy
  • social media
  • high intensity
  • health information
  • contrast enhanced