Login / Signup

Vision Sensor-Based Real-Time Fire Detection in Resource-Constrained IoT Environments.

Hikmat YarTanveer HussainZulfiqar Ahmad KhanDeepika KoundalMi Young LeeSung Wook Baik
Published in: Computational intelligence and neuroscience (2021)
Fire detection and management is very important to prevent social, ecological, and economic damages. However, achieving real-time fire detection with higher accuracy in an IoT environment is a challenging task due to limited storage, transmission, and computation resources. To overcome these challenges, early fire detection and automatic response are very significant. Therefore, we develop a novel framework based on a lightweight convolutional neural network (CNN), requiring less training time, and it is applicable over resource-constrained devices. The internal architecture of the proposed model is inspired by the block-wise VGG16 architecture with a significantly reduced number of parameters, input size, inference time, and comparatively higher accuracy for early fire detection. In the proposed model, small-size uniform convolutional filters are employed that are specifically designed to capture fine details of input fire images with a sequentially increasing number of channels to aid effective feature extraction. The proposed model is evaluated on two datasets such as a benchmark Foggia's dataset and our newly created small-scaled fire detection dataset with extremely challenging real-world images containing a high-level of diversity. Experimental results conducted on both datasets reveal the better performance of the proposed model compared to state-of-the-art in terms of accuracy, false-positive rate, model size, and running time, which indicates its robustness and feasible installation in real-world scenarios.
Keyphrases
  • convolutional neural network
  • deep learning
  • loop mediated isothermal amplification
  • label free
  • real time pcr
  • healthcare
  • climate change
  • mental health
  • single cell
  • dna methylation
  • genome wide
  • quantum dots