Login / Signup

Full-length αIIbβ3 CryoEM structure reveals intact integrin initiate-activation intrinsic architecture.

Zhao WangTong HuoHongjiang WuZeinab MoussaMehmet SenValerie Dalton
Published in: Research square (2023)
Integrin αIIbβ3 is the key receptor regulating platelet retraction and accumulation, thus pivotal for hemostasis, and arterial thrombosis as well as a proven drug-target for antithrombotic therapies. Here we resolve the cryoEM structures of the intact full-length αIIbβ3, which covers three distinct states along the activation pathway. Here, we resolve intact αIIbβ3 structure at 3Å resolution, revealing the overall topology of the heterodimer with the transmembrane (TM) helices and the head region ligand-binding domain tucked in a specific angle proximity to the TM region. In response to the addition of an Mn 2+ agonist, we resolved two coexisting states, "intermediate" and "pre-active". Our structures show conformational changes of the intact αIIbβ3 activating trajectory, as well as a unique twisting of the lower integrin legs representing intermediate state (TM region at a twisting conformation) integrin and a coexisting pre-active state (bent and opening in leg), which is required for inducing the transitioning platelets to accumulate. Our structure provides for the first time direct structural evidence for the lower legs' involvement in full-length integrin activation mechanisms. Additionally, our structure offers a new strategy to target the αIIbβ3 lower leg allosterically instead of modulating the affinity of the αIIbβ3 head region.
Keyphrases
  • cell adhesion
  • cell migration
  • high resolution
  • signaling pathway
  • molecular dynamics simulations
  • atrial fibrillation
  • single molecule
  • molecular dynamics
  • transition metal