Login / Signup

A multifunctional UiO-66@carbon interlayer as an efficacious suppressor of polysulfide shuttling for lithium-sulfur batteries.

Shaoning ZhengXinnan ZhaoGuihua LiuFeichao WuJingde Li
Published in: Nanotechnology (2021)
Restraining the shuttle effect in lithium-sulfur (Li-S) battery is crucial to realize its practical application. In this work, a UiO-66@carbon (UiO-66@CC) interlayer was developed for Li-S battery by growing a continuous UiO-66 film on carbon cloth. The continuous UiO-66 crystal layer contributes to provide sufficient adsorptive and catalytic sites for efficient adsorption and catalytic conversion towards polysulfides. Moreover, the hydrophilic property of UiO-66 material ensures the full infiltration of electrolyte and accelerates the transportation of lithium ions. Profiting from the above advantages of the proposed interlayer, the shuttle effect is effectively inhibited and a fast redox kinetic is also realized. Accordingly, the Li-S battery using UiO-66@CC delivers a specific capacity of 1228.9 mAh g-1at 0.2 C with a nearly 100% capacity retention after 100 cycles, and the first specific capacity is 1033.1 mAh g-1at 1.0 C with a decay rate of 0.07% over 600 cycles. Meanwhile, UiO-66@CC interlayer also has an excellent rate performance with a specific capacity of 535.9 mAh g-1at 5.0 C and a high area capacity of 6.2 mAh cm-2at increased sulfur loading (8.15 mg cm-2).
Keyphrases
  • solid state
  • metal organic framework
  • drug delivery
  • aqueous solution
  • quantum dots
  • cancer therapy
  • liquid chromatography
  • reduced graphene oxide