Exploiting Broad-Spectrum Chimeric Lysin to Cooperate with Mupirocin against Staphylococcus aureus-Induced Skin Infections and Delay the Development of Mupirocin Resistance.
Xiao-Chao DuanXin-Xin LiXiang-Min LiShuang WangFen-Qiang ZhangPing QianPublished in: Microbiology spectrum (2023)
Staphylococcus aureus often leads to severe skin infections. However, S. aureus is facing a crisis of antibiotic resistance. The combination of phage and antibiotics is effective for drug-resistant S. aureus infections. Therefore, it is worth exploiting novel antibacterial agents to cooperate with antibiotics against S. aureus infections. Herein, a novel chimeric lysin ClyQ was constructed, which was composed of a cysteine- and histidine-dependent amidohydrolase/peptidase (CHAP) catalytic domain from S. aureus phage lysin LysGH15 and cell wall-binding domain (CBD) from Enterococcus faecalis phage lysin PlyV12. ClyQ had an exceptionally broad host range targeting streptococci, staphylococci, E. faecalis, and E. rhusiopathiae . ClyQ combined with mupirocin (2.64 log reduction) was more effective at treating S. aureus skin infections than ClyQ (0.46 log reduction) and mupirocin (2.23 log reduction) alone. Of equal importance, none of S. aureus ATCC 29213 or S3 exposed to ClyQ developed resistance, and the combination of ClyQ and mupirocin delayed the development of mupirocin resistance. Collectively, chimeric lysin ClyQ enriches the reservoirs for treating S. aureus infections. Our findings may provide a way to alleviate the current antibiotic resistance crisis. IMPORTANCE Staphylococcus aureus, as an Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species (ESKAPE) pathogen, can escape the elimination of existing antibiotics. At present, phages and phage lysins against S. aureus infections are considered alternative antibacterial agents. However, the development of broad-spectrum chimeric phage lysins to cooperate with antibiotics against S. aureus infections remains at its initial stage. In this study, we found that the broad-host-range chimeric lysin ClyQ can synergize with mupirocin to treat S. aureus skin infections. Furthermore, the development of S. aureus resistance to mupirocin is delayed by the combination of ClyQ and mupirocin in vitro . Our results bring research attention toward the development of chimeric lysin that cooperates with antibiotics to overcome bacterial infections.