Login / Signup

A constraint-relaxation-recovery mechanism for stomatal dynamics.

Mareike JezekAdrian HillsMichael R BlattVirgilio L Lew
Published in: Plant, cell & environment (2019)
Models of guard cell dynamics, built on the OnGuard platform, have provided quantitative insights into stomatal function, demonstrating substantial predictive power. However, the kinetics of stomatal opening predicted by OnGuard models were threefold to fivefold slower than observed in vivo. No manipulations of parameters within physiological ranges yielded model kinetics substantially closer to these data, thus highlighting a missing component in model construction. One well-documented process influencing stomata is the constraining effect of the surrounding epidermal cells on guard cell volume and stomatal aperture. Here, we introduce a mechanism to describe this effect in OnGuard2 constructed around solute release and a decline in turgor of the surrounding cells and its subsequent recovery during stomatal opening. The results show that this constraint-relaxation-recovery mechanism in OnGuard2 yields dynamics that are consistent with experimental observations in wild-type Arabidopsis, and it predicts the altered opening kinetics of ost2 H+ -ATPase and slac1 Cl- channel mutants. Thus, incorporating solute flux of the surrounding cells implicitly through their constraint on guard cell expansion provides a satisfactory representation of stomatal kinetics, and it predicts a substantial and dynamic role for solute flux across the apoplastic space between the guard cells and surrounding cells in accelerating stomatal kinetics.
Keyphrases
  • induced apoptosis
  • cell cycle arrest
  • stem cells
  • wild type
  • cell therapy
  • cell death
  • mass spectrometry
  • bone marrow
  • electronic health record
  • single molecule
  • aqueous solution