Login / Signup

Mobilization, Methylation, and Demethylation of Mercury in a Paddy Soil Under Systematic Redox Changes.

Jianxu WangSabry M ShaheenMin JingChristopher W N AndersonAnn-Christin SwertzShan-Li WangXin-Bin FengJörg Rinklebe
Published in: Environmental science & technology (2021)
Methylmercury (MeHg) contamination in paddy fields is a significant environmental issue globally since over half of the population of our planet consumes rice. MeHg is a neurotoxin produced by microorganisms in oxygen-limited environments. Microbial effect on MeHg production is a hotspot of research; however, it has been largely ignored how the oxidation-reduction potential (Eh) shapes MeHg formation. Here, we elucidated Hg (de)-methylation in a contaminated soil by increasing Eh stepwise from -300 to +300 mV using a sophisticated biogeochemical microcosm. At the Eh range from -300 to -100 mV, high MeHg concentration and dissolved total Hg (THg) concentration were found due to a high relative abundance of Hg-methylation bacteria (e.g., Desulfitobacterium spp.), acidification, and reductive dissolution of Fe(oxyhydr)oxides. At the Eh range from 0 to +200 mV, the formation of colloids leads to adsorption of Hg and as a result colloidal Hg increased. MeHg reduction with Eh (-300 to +200 mV) increase was mainly attributed to a reduced Hg methylation, as dissolved THg and relative abundance of Desulfitobacterium spp. decreased by 50 and 96%, respectively, at Eh of +200 mV as compared to Eh of -300 mV. Mercury demethylation might be less important since the relative abundance of demethylation bacteria (Clostridium spp.) also decreased over 93% at Eh of +200 mV. These new results are crucial for predicting Hg risks in paddy fields.
Keyphrases
  • aqueous solution
  • fluorescent probe
  • living cells
  • dna methylation
  • genome wide
  • human health
  • antibiotic resistance genes
  • gene expression
  • microbial community
  • organic matter
  • drinking water
  • climate change