Login / Signup

Allosteric Boost by TAB1 on the TAK1 Kinase Favorably Sculpts the Thermodynamic Landscape of Activation.

Nibedita Ray ChaudhuriShubhra Ghosh Dastidar
Published in: Journal of chemical information and modeling (2022)
The intricate mechanisms of allosteric regulation in kinases are of general interest to the scientific community for potential therapeutic implications. However, the diversity among kinases and their regulatory routes requires a case-by-case study to widen the repertoire of known mechanisms. The present study achieves this by understanding TAK1 kinase activation by TAB1 as a model phenomenon for the first time. Despite the known capacity of TAK1 to switch between its inactive ("DFG-out") and active-like ("DFG-in") conformations, the questionable role of TAB1 in offering an energetic favor to this has been addressed here using sequential combination of enhanced sampling methods like targeted molecular dynamics (TMD) and Gaussian accelerated molecular dynamics (GaMD). It reveals how a minimal domain of TAB1 sufficiently acts like a "catalytic gear" by favorably sculpting TAK1's thermodynamic landscape (potential of mean force in 2D) that accelerates "in"-"out" conformational switching of the conserved DFG motif. Standard molecular dynamics simulations (∼5 μs) reveal that TAB1 fascinatingly exploits the "lever-like" αF helix of TAK1 kinase domain to remotely propel the DFG motif via subtle helical "unfolding-folding" modifications within the kinase activation loop. The presence of two charged residues on terminal poles of αF helix imparts it, with this unique "lever-like" utility, and this turns out to be one important signature of co-evolution between TAK1 and TAB1. The entire mechanism of TAB1's impact transduction, which is found to be analogous to the moves in the popular "Chinese checker" game, gives a clear proof of the "dynamics-driven allostery" concept in kinases. The findings further benchmark TAK1's known autophosphorylation capacity. A novel insight into kinase allostery is thus provided, which potentiates investigation of similar capacities in other kinases.
Keyphrases