Comparative analysis of optional hunting behavior in Cricetinae hamsters using the data compression approach.
Jan LevenetsS PanteleevaZh ReznikovaA GureevaV KupriyanovN FeoktistovaA SurovPublished in: Frontiers in zoology (2024)
Research into the hunting behavior in members of the Cricetidae family offers an opportunity to reveal what changes in the predatory behavioral sequences occur when a rodent species shifts from an omnivorous to a predatory lifestyle. The study tests the following hypotheses: are there phylogenetic differences in the divergence of species' predatory lifestyles in hamsters or do ecological factors lead to shaping their hunting behavior? We applied the data compression approach for performing comparative analysis of hunting patterns as biological "texts." The study presents a comparative analysis of hunting behaviors in five Cricetinae species, focusing on the new data obtained for the desert hamster Phodopus roborovskii whose behavior has never been studied before. The hunting behavior of P. roborovskii appeared to be the most variable one. In contrast, behavioral sequences in P. campbelli and Allocricetulus curtatus display more significant order and predictability of behavior during hunting. Optional hunting behavior in the most ancient species P. roborovskii displayed similarities with obligate patterns in "young" Allocricetulus species. It thus turned out to be the most advanced hunter among members of the Phodopus genus. Differences in hunting sequences among Phodopus representatives suggest that the hunting behavior of these species, despite its optional mode, was subject to selection during species splitting within the genus. These results did not reveal the role played by phylogenetic differences in the divergence of species' predatory lifestyles. They suggested that ecological conditions are the main factors in speciation of the hunting behavior in hamsters.