Login / Signup

Automatic Diagnosis of Infectious Keratitis Based on Slit Lamp Images Analysis.

Shaodan HuYiming SunJinhao LiPeifang XuMingyu XuYifan ZhouYaqi WangShuai WangJuan Ye
Published in: Journal of personalized medicine (2023)
Infectious keratitis (IK) is a common ophthalmic emergency that requires prompt and accurate treatment. This study aimed to propose a deep learning (DL) system based on slit lamp images to automatically screen and diagnose infectious keratitis. This study established a dataset of 2757 slit lamp images from 744 patients, including normal cornea, viral keratitis (VK), fungal keratitis (FK), and bacterial keratitis (BK). Six different DL algorithms were developed and evaluated for the classification of infectious keratitis. Among all the models, the EffecientNetV2-M showed the best classification ability, with an accuracy of 0.735, a recall of 0.680, and a specificity of 0.904, which was also superior to two ophthalmologists. The area under the receiver operating characteristics curve (AUC) of the EffecientNetV2-M was 0.85; correspondingly, 1.00 for normal cornea, 0.87 for VK, 0.87 for FK, and 0.64 for BK. The findings suggested that the proposed DL system could perform well in the classification of normal corneas and different types of infectious keratitis, based on slit lamp images. This study proves the potential of the DL model to help ophthalmologists to identify infectious keratitis and improve the accuracy and efficiency of diagnosis.
Keyphrases