Context-dependency in carnivore co-occurrence across a multi-use conservation landscape.
Gonçalo Curveira-SantosLaura C GigliottiChristopher SutherlandDaniela RatoMargarida Reis Dos SantosLourens H SwanepoelPublished in: Ecology and evolution (2022)
Carnivore intraguild dynamics depend on a complex interplay of environmental affinities and interspecific interactions. Context-dependency is commonly expected with varying suites of interacting species and environmental conditions but seldom empirically described. In South Africa, decentralized approaches to conservation and the resulting multi-tenure conservation landscapes have markedly altered the environmental stage that shapes the structure of local carnivore assemblages. We explored assemblage-wide patterns of carnivore spatial (residual occupancy probability) and temporal (diel activity overlap) co-occurrence across three adjacent wildlife-oriented management contexts-a provincial protected area, a private ecotourism reserve, and commercial game ranches. We found that carnivores were generally distributed independently across space, but existing spatial dependencies were context-specific. Spatial overlap was most common in the protected area, where species occur at higher relative abundances, and in game ranches, where predator persecution presumably narrows the scope for spatial asymmetries. In the private reserve, spatial co-occurrence patterns were more heterogeneous but did not follow a dominance hierarchy associated with higher apex predator densities. Pair-specific variability suggests that subordinate carnivores may alternate between pre-emptive behavioral strategies and fine-scale co-occurrence with dominant competitors. Consistency in species-pairs diel activity asynchrony suggested that temporal overlap patterns in our study areas mostly depend on species' endogenous clock rather than the local context. Collectively, our research highlights the complexity and context-dependency of guild-level implications of current management and conservation paradigms; specifically, the unheeded potential for interventions to influence the local network of carnivore interactions with unknown population-level and cascading effects.