Quantitative Susceptibility MRI to Detect Brain Iron in Amyotrophic Lateral Sclerosis.
Julio Acosta-CabroneroJudith MachtsStefanie SchreiberSusanne AbdullaKatja KolleweSusanne PetriNicola SpotornoJoern KaufmannHans-Jochen HeinzeReinhard DenglerStefan VielhaberPeter J NestorPublished in: Radiology (2018)
Purpose To investigate the whole-brain landscape of iron-related abnormalities in amyotrophic lateral sclerosis (ALS) by using the in vivo MRI technique of quantitative susceptibility mapping (QSM). Materials and Methods For this prospective study, 28 patients with ALS (mean age, 61 years; age range, 43-77 years; 18 men [mean age, 61 years; range, 43-77 years] and 10 women [mean age, 61 years; range, 47-74 years]) recruited between January 17, 2014, and September 4, 2015, and 39 matched control subjects (mean age, 61 years; age range, 39-77 years; 24 men [mean age, 62 years; range, 39-77 years] and 15 women [mean age, 59 years; range, 39-73 years]) were examined by using structural and susceptibility 3.0-T MRI techniques. Group data were cross sectionally compared with family-wise error (FWE) corrections by using voxel-based morphometry (random-field theory), cortical thickness analysis (Monte Carlo simulated), subcortical volumetry (Bonferroni-corrected Wilcoxon rank-sum testing), and QSM analysis (cluster-enhanced whole-brain permutation testing and Bonferroni-corrected rank-sum testing in regions of interest). In patients with ALS, a potential relationship between diffusion and susceptibility measurements in the corticospinal tracts (CSTs) was also examined by using Spearman rank-correlation tests. Results Conventional structural measures failed to identify atrophy in the present cohort (FWE P > .05). However, QSM identified several whole-brain abnormalities (FWE P < .05) in ALS. Regionally, higher susceptibility (expressed as means in parts per million ± standard errors of the mean) was confirmed in the motor cortex (ALS = 0.0188 ± 0.0003, control = 0.0173 ± 0.0003; P < .001), the left substantia nigra (ALS = 0.127 ± 0.004, control = 0.113 ± 0.003; P = .008), the right substantia nigra (ALS = 0.141 ± 0.005, control = 0.120 ± 0.003; P < .001), the globus pallidus (ALS = 0.086 ± 0.003, control = 0.075 ± 0.002; P = .003), and the red nucleus (ALS = 0.115 ± 0.004, control = 0.098 ± 0.003; P < .001). Lower susceptibility was found in CST white matter (ALS = -0.047 ± 0.001, control = -0.043 ± 0.001; P = .01). Nigral and pallidal QSM values were cross correlated in ALS (ρ2 = 0.42, P < .001), a phenomenon visually traceable in many individual patients. QSM in the CST in ALS also correlated with diffusion-tensor metrics in this tract (ρ2 = 0.25, P = .007). Conclusion Whole-brain MRI quantitative susceptibility mapping analysis is sensitive to tissue alterations in amyotrophic lateral sclerosis that may be relevant to pathologic changes. © RSNA, 2018.
Keyphrases
- white matter
- amyotrophic lateral sclerosis
- magnetic resonance imaging
- high resolution
- computed tomography
- contrast enhanced
- type diabetes
- skeletal muscle
- metabolic syndrome
- machine learning
- chronic kidney disease
- squamous cell carcinoma
- end stage renal disease
- deep brain stimulation
- locally advanced
- pregnant women
- mass spectrometry
- blood brain barrier
- patient safety
- big data
- quality improvement
- climate change
- drug induced
- diffusion weighted imaging