Login / Signup

Self-Consistent Charge Density Functional Tight-Binding Study of Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) Ammonia Gas Sensor.

Ampaiwan MarutaphanYotsarayuth SeekaewChatchawal Wongchoosuk
Published in: Nanoscale research letters (2017)
Geometric and electronic properties of 3,4-ethylenedioxythiophene (EDOT), styrene sulfonate (SS), and EDOT: SS oligomers up to 10 repeating units were studied by the self-consistent charge density functional tight-binding (SCC-DFTB) method. An application of PEDOT:PSS for ammonia (NH3) detection was highlighted and investigated both experimentally and theoretically. The results showed an important role of H-bonds in EDOT:SS oligomers complex conformation. Electrical conductivity of EDOT increased with increasing oligomers and doping SS due to enhancement of π conjugation. Printed PEDOT:PSS gas sensor exhibited relatively high response and selectivity to NH3. The SCC-DFTB calculation suggested domination of direct charge transfer process in changing of PEDOT:PSS conductivity upon NH3 exposure at room temperature. The NH3 molecules preferred to bind with PEDOT:PSS via physisorption. The most favorable adsorption site for PEDOT:PSS-NH3 interaction was found to be at the nitrogen atom of NH3 and hydrogen atoms of SS with an average optimal binding distance of 2.00 Å.
Keyphrases
  • room temperature
  • perovskite solar cells
  • ionic liquid
  • blood brain barrier
  • dna binding
  • molecular dynamics
  • molecular dynamics simulations
  • loop mediated isothermal amplification
  • sensitive detection
  • low cost