Login / Signup

Theoretical investigations of oxygen vacancy effects in nickel-doped zirconia from ab initio XANES spectroscopy at the oxygen K-edge.

Dick Hartmann DoumaLodvert Tchibota PoatyAlessio LampertiStéphane KenmoeAbdulrafiu Tunde RajiAlberto DebernardiBernard M'Passi-Mabiala
Published in: Beilstein journal of nanotechnology (2022)
In this study, we present theoretical X-ray absorption near-edge structure (XANES) spectra at the K-edge of oxygen in zirconia containing Ni dopant atoms and O vacancies at varying concentrations. Specifically, our model system consist of a supercell composed of a zirconia (ZrO 2 ) matrix containing two nickel dopants (2Ni), which substitute two Zr atoms at a finite separation. We found the 2Ni atoms to be most stable in a ferromagnetic configuration in the absence of oxygen vacancies. In this system, each Ni atom is surrounded by two shells of O with tetrahedral geometry, in a similar way as in bulk cubic zirconia. The oxygen K-edge XANES spectrum of this configuration shows a pre-edge peak, which is attributable to dipole transitions from O 1s to O 2p states that are hybridized with unoccupied Ni 3d states. The intensity of this pre-edge peak, however, reduces upon the introduction of a single vacancy in the 2Ni-doped zirconia matrix. The corresponding ground state remains ferromagnetic, while one of the nickel atoms adopts a trigonal bipyramidal geometry, and the other one remains in a tetrahedral geometry. Furthermore, the introduction of two vacancies in the 2Ni-doped zirconia results in the two Ni atoms having distorted octahedral and trigonal bipyramidal geometries and being coupled antiferromagnetically in the ground state. Additionally, the oxygen K-edge XANES spectrum shows a further decrease in the intensity of the pre-edge peak, compared to the case of a single vacancy. Thus, the changes in the intensity of the pre-edge peak evidence a major structural change in the local environment around nickel atoms and, by extension, in the zirconia matrix. This change is due to the structural disorder induced by the 2Ni dopants and the O vacancies. Furthermore, the analysis of the XANES signatures shows that the oxidation state of nickel atoms changes with the introduction of oxygen vacancies. Our study therefore shows a possibility to control the oxidation state and magnetic order in a typical diluted magnetic oxide. Such a finding may be crucial for spintronics-related applications.
Keyphrases