Login / Signup

L-carnitine protects the lung from radiation-induced damage in rats via the AMPK/SIRT1/TGF-1ß pathway.

Nasif Fatih KarakuyuAlper ÖzsevenSüleyman Emre AkınHasan Ekrem ÇamaşOzlem OzmenÇağla Cengiz
Published in: Naunyn-Schmiedeberg's archives of pharmacology (2024)
Radiotherapy (RAD) is a common cancer treatment method, but it can have unintended lung side effects. L-carnitine (LCAR) is an amino acid with antioxidant and anti-inflammatory properties. This study aims to demonstrate the effects of LCAR against radiation-induced acute lung injury and to elucidate its possible protective molecular mechanisms. A total of 32 Wistar albino rats were separated into four groups: control, RAD (10 Gy once on 1st day), RAD + LCAR (intraperitoneally, 200 mg/kg/d, for 10 days), and LCAR. At the end of the experiment, the rats were euthanized, and the lung tissues were collected for histopathological, immunohistochemical, biochemical, and genetic analysis. Emphysema, pronounced hyperemia, increased total oxidant status, and increased caspase-3 and TNF-α immunostainings were all seen in the lung tissues of the RAD group. LCAR treatment reduced these negative effects. In addition, AMPK and SIRT1 gene expressions increased in the RAD + LCAR group compared to the RAD group, while TGF-1ß gene expression decreased. While RAD caused major damage to the lungs of rats, LCAR application reduced this damage through antioxidant, anti-inflammatory, and anti-apoptotic mechanisms. Specifically, LCAR reduced fibrosis while attenuating RAD-induced inflammation and oxidative stress via the AMPK/SIRT1/TGF-1ß pathway. Therefore, LCAR can be considered a supplement to reduce complications associated with RAD.
Keyphrases