Login / Signup

Membrane-Based In Situ Mid-Infrared Spectroscopic Ellipsometry: A Study on the Membrane Affinity of Polylactide-co-glycolide Nanoparticulate Systems.

Alekszej RomanenkoBenjamin KalasPetra HermannOrsolya HakkelLevente IllésMiklós FriedPeter FürjesGergö GyulaiPeter Petrik
Published in: Analytical chemistry (2020)
Mid-infrared (IR) ellipsometry of thin films and molecule layers at solid-liquid interfaces has been a challenge because of the absorption of light in water. It has been usually overcome by using configurations utilizing illumination through the solid substrate. However, the access to the solid-liquid interface in a broad spectral range is also challenging due to the limited transparency of most structural materials in the IR wavelength range. In this work, we propose a concept of a microfabricated analysis cell based on an IR-transparent Si membrane with advantages of a robust design, flexible adaptation to existing equipment, small volume, multiple-angle capabilities, broad wavelength range, and opportunities of multilayer applications for adjusted ranges of high sensitivity. The chamber was prepared by 3D micromachining technology utilizing deep reactive ion etching of a silicon-on-insulator wafer and bonded to a polydimethylsiloxane microfluidic injection system resulting in a cell volume of approximately 50 μL. The mechanical stability of the 2 and 5 μm-thick membranes was tested using different "backbone" reinforcement structures. It was proved that the 5 μm-thick membranes are stable at lateral cell sizes of 5 mm by 20 mm. The cell provides good intensity and adjustment capabilities on the stage of a commercial mid-IR ellipsometer. The membrane configuration also provides optical access to the sensing interfaces at a broad range of incident angles, which is a significant advantage in many potential sensing structure configurations, such as plasmonic, multilayer, 2D, or metamaterial applications.
Keyphrases